Wednesday, 27 March 2019

RENEWABLE AND NON RENEWABLE SOURCES OF ENERGY

Renewable Energy

Image result for renewable energy      Image result for renewable energy

There are many forms of renewable energy . Most of these renewable energies depend in one way or another on sunlight. Wind and hydroelectric power are the direct result of differential heating of the Earth's surface which leads to air moving about (wind) and precipitation forming as the air is lifted. Solar energy is the direct conversion of sunlight using panels or collectors. Biomass energy is stored sunlight contained in plants. Other renewable energies that do not depend on sunlight are geothermal energy, which is a result of radioactive decay in the crust combined with the original heat of accreting the Earth, and tidal energy, which is a conversion of gravitational energy.
Solar. This form of energy relies on the nuclear fusion power from the core of the Sun. This energy can be collected and converted in a few different ways. The range is from solar water heating with solar collectors or attic cooling with solar attic fans for domestic use to the complex technologies of direct conversion of sunlight to electrical energy using mirrors and boilers or photovoltaic cells. Unfortunately these are currently insufficient to fully power our modern society.
Wind PowerThe movement of the atmosphere is driven by differences of temperature at the Earth's surface due to varying temperatures of the Earth's surface when lit by sunlight. Wind energy can be used to pump water or generate electricity, but requires extensive areal coverage to produce significant amounts of energy.
Biomass is the term for energy from plants. Energy in this form is very commonly used throughout the world. Unfortunately the most popular is the burning of trees for cooking and warmth. This process releases copious amounts of carbon dioxide gases into the atmosphere and is a major contributor to unhealthy air in many areas. Some of the more modern forms of biomass energy are methane generation and production of alcohol for automobile fuel and fueling electric power plants.
Hydrogen and fuel cells. These are also not strictly renewable energy resources but are very abundant in availability and are very low in pollution when utilized. Hydrogen can be burned as a fuel, typically in a vehicle, with only water as the combustion product. This clean burning fuel can mean a significant reduction of pollution in cities. Or the hydrogen can be used in fuel cells, which are similar to batteries, to power an electric motor. In either case significant production of hydrogen requires abundant power. Due to the need for energy to produce the initial hydrogen gas, the result is the relocation of pollution from the cities to the power plants. There are several promising methods to produce hydrogen, such as solar power, that may alter this picture drastically.
Geothermal powerEnergy left over from the original accretion of the planet and augmented by heat from radioactive decay seeps out slowly everywhere, everyday. In certain areas the geothermal gradient (increase in temperature with depth) is high enough to exploit to generate electricity. This possibility is limited to a few locations on Earth and many technical problems exist that limit its utility. Another form of geothermal energy is Earth energy, a result of the heat storage in the Earth's surface. Soil everywhere tends to stay at a relatively constant temperature, the yearly average, and can be used with heat pumps to heat a building in winter and cool a building in summer. This form of energy can lessen the need for other power to maintain comfortable temperatures in buildings, but cannot be used to produce electricity.
Other forms of energyEnergy from tides, the oceans and hot hydrogen fusion are other forms that can be used to generate electricity. Each of these is discussed in some detail with the final result being that each suffers from one or another significant drawback and cannot be relied upon at this time to solve the upcoming energy crunch.

Non-Renewable Energy

Image result for non renewable energy


The world is addicted to cheap , readily available oil. It's a polluting energy source that exists in finite amounts, the bulk of which is concentrated in the politically volatile Persian Gulf . Whether your nation's energy of choice is fossil fuel, nuclear energy or a combination of both, it is a deadly addiction. History will repeat itself in the convulsions of war, starvation and political upheavals when the current cheap supplies start dwindling, unless we prepare now for a future based on new energy systems.
Back in the 1960s, predictions that the United States would have pumped over half of its total supply of oil by the 1970's met with stiff opposition from the energy dealers and by governments buoyed up by fuel profits. They were wrong, the U.S. is now well past its halfway point in consuming its inexpensive oil reserves. Nuclear energy was touted as an unlimited panacea, destined to be so cheap the electric companies wouldn't even put meters on houses. Conventional oil is running out, and we now know nuclear fuel is quite limited in supply as well.
In the face of the world's greatest impending disaster, nations still doctor their listed reserves in order to preserve global credit ratings and credibility and to placate their populations. As an example, the $50 billion loan to Mexico from the U.S. was based on collateral in the form of profits on oil sales a collateral that was exaggerated and insufficient. OPEC countries are rewarded for artificial reserve inflation by being allowed to pump more oil per year, thus boosting their oil-based economies. The world's population is based on food grown with petroleum-based fertilizers, and cultivated by machines running on cheap fuel. As competition for this limited resource increases, starvation, population collapse, and global conflicts will ensue.

Solar Energy

Image result for solar energy
The Earth receives an incredible supply of solar energy. The sun, an average star, is a fusion reactor that has been burning over 4 billion years. It provides enough energy in one minute to supply the world's energy needs for one year. In one day, it provides more energy than our current population would consume in 27 years. In fact, "The amount of solar radiation striking the earth over a three-day period is equivalent to the energy stored in all fossil energy sources."
Solar energy is a free, inexhaustible resource, yet harnessing it is a relatively new idea. The ability to use solar power for heat was the first discovery. A Swiss scientist, Horace de Saussure, built the first thermal solar collector in 1767, which was later used to heat water and cook food. The first commercial patent for a solar water heater went to Clarence Kemp of the US in 1891. This system was bought by two California executives and installed in one-third of the homes in Pasadena by 1897.
Producing electricity from solar energy was the second discovery. In 1839 a French physicist named Edmund Becquerel realized that the sun's energy could produce a "photovoltaic effect" (photo = light, voltaic = electrical potential). In the 1880s, selenium photovoltaic (PV) cells were developed that could convert light into electricity with 1-2% efficiency ("the efficiency of a solar cell is the percentage of available sunlight converted by the photovoltaic cell into electricity"), but how the conversion happened was not understood. Photovoltaic power therefore "remained a curiosity for many years, since it was very inefficient at turning sunlight into electricity." It was not until Albert Einstein proposed an explanation for the "photoelectric effect" in the early 1900s, for which he won a Nobel Prize, that people began to understand the related photovoltaic effect.
"Solar technology advanced to roughly its present design in 1908 when William J. Bailey of the Carnegie Steel Company invented a collector with an insulated box and copper coils." By the mid-1950s Bell Telephone Labs had achieved 4% efficiency, and later 11% efficiency, with silicon PV cells. From then on, interest in solar power intensified. During the late 1950s and 1960s, the space program took an active role in the development of photovoltaics. "The cells were perfect sources of electric power for satellites because they were rugged, lightweight and could meet the low power requirements reliably." Unfortunately, the cells were not practical for use on earth due to the high cost of making them efficient and lightweight, so further research was necessary.
Solar energy may have had great potential , but it was left on the backburner whenever fossil fuels were more affordable and available. "Only in the last few decades when growing energy demands, increasing environmental problems and declining fossil fuel resources made us look to alternative energy options have we focused our attention on truly exploiting this tremendous resource." For instance, the US Department of Energy funded the installation and testing of over 3,000 PV systems during the 1973-1974 oil embargo. By the late 1970s, energy companies and government agencies had invested in the PV industry, and "a tremendous acceleration in module development took place." Solar energy improvements were again sought during the Gulf War in the 1990s.
Considering that "the first practical solar cells were made less than 30 years ago," we have come a long way.The profligation of solar professional companies designing unique and specific solar power systems for individual homes, means there is no longer an excuse not to consider solar power for your home. The biggest jumps in efficiency came "with the advent of the transistor and accompanying semiconductor technology." The production cost has fallen to nearly 1/300 of what it was during the space program of the mid-century and the purchase cost has gone from $200 per watt in the 1950s to a possible mere $1 per watt today. The efficiency has increased dramatically to 40.8% the US Department of Energy's National Renewable Energy Lab's new world record as of August 2008.
We still use solar power in the same two forms today, thermal and photovoltaic. The first concentrates sunlight, converts it into heat, and applies it to a steam generator or engine to be converted into electricity in order "to warm buildings, heat water, generate electricity, dry crops or destroy dangerous waste." Electricity is generated when the heated fluid drives turbines or other machinery. The second form of solar power produces electricity directly without moving parts. Today's photovoltaic system is composed of cells made of silicon, the second most abundant element in the earth's crust. "Power is produced when sunlight strikes the semiconductor material and creates an electric current." The smallest unit of the system is a cell. Cells wired together form a module, and modules wired together form a panel. A group of panels is called an array, and several arrays form an array field.
There are several advantages of photovoltaic solar power that make it "one of the most promising renewable energy sources in the world." It is non-polluting, has no moving parts that could break down, requires little maintenance and no supervision, and has a life of 20-30 years with low running costs. It is especially unique because no large-scale installation is required. Remote areas can easily produce their own supply of electricity by constructing as small or as large of a system as needed. Solar power generators are simply distributed to homes, schools, or businesses, where their assembly requires no extra development or land area and their function is safe and quiet. As communities grow, more solar energy capacity can be added, "thereby allowing power generation to keep in step with growing needs without having to overbuild generation capacity as is often the case with conventional large scale power systems." Compare those characteristics to those of coal, oil, gas, or nuclear power, and the choice is easy. Solar energy technologies offer a clean, renewable and domestic energy source.
Photovoltaic power even has advantages over wind power, hydropower, and solar thermal power. The latter three require turbines with moving parts that are noisy and require maintenance.
Solar energy is most sought today in developing countries, the fastest growing segment of the photovoltaics market. People go without electricity as the sun beats down on the land, making solar power the obvious energy choice. "Governments are finding its modular, decentralized character ideal for filling the electric needs of the thousands of remote villages in their countries." It is much more practical than the extension of expensive power lines into remote areas, where people do not have the money to pay for conventional electricity.
India is becoming one of the world's main producers of PV modules, with plans to power 100,000 villages and install solar-powered telephones in its 500,000 villages. By 2000, Mexico plans to have electrified 60,000 villages with solar power. Zaire 's Hospital Bulape serves 50,000 outpatients per year and is run completely on solar power, from air conditioning to x-ray equipment. And in Moroccan bazaars, carpets, tin ware, and solar panels lie side by side for sale. Probably the most outstanding example of a country's commitment to solar power is in Israel . In 1992, over half of all households (700,000) heated their water with solar energy systems. And there are 50,000 new installations every year.
Solar power is just as practical in populated areas connected to the local electrical power grid as it is in remote areas. "An average home has more than enough roof area to produce enough solar electricity to supply all of its power needs. With an inverter, which converts direct current (DC) power from the solar cells to alternating current (AC), which is what most home appliances run on, a solar home can look and operate very much like a home that is connected to a power line."
Household energy supply is but one use of solar power. There are actually four broad categories that can be identified for solar energy use: industrial, rural habitation, grid-connected, and consumer/indoor. Industrial uses represent the largest applications of solar power in the past 30 years. "Telecommunications, oil companies, and highway safety equipment all rely on solar power for dependable, constant power far from any power lines." Roadside call boxes and lighted highway signs rely on the sun's energy in order to provide reliable services without buried cable connections or diesel generators. Navigational systems such as marine buoys and other unmanned installations in harsh remote areas are also ideal applications for solar power because "the load demands are well known and the requirements for reliable power are the highest." Rural habitation includes "cabins, homes, villages, clinics, schools, farms, as well as individually powered lights and small appliances." Grid-connected systems pair solar power with an existing grid network in order to supply a commercial site with enough energy to meet a high demand, or to supplement a family's household supply. Consumer/indoor uses of PV cells include watches and calculators; PV modules power computers and radios.
The practicality and environmentally safe nature of solar power is influencing people worldwide, which is evident in equipment sales. According to Seimens Solar, production of PV cells and modules increased threefold from 40 MW in 1990 to about 120 MW in 1998. "Worldwide sales have been increasing at an average rate of about 15% every year during the last decade . We believe that there is a realistic possibility for the market to continue to grow at about a 15% rate into the next decade. At this rate, the world production capacity would be 1000 MW by 2010, and photovoltaics could be a $5 billion industry."
There are only two primary disadvantages to using solar power: amount of sunlight and cost of equipment. The amount of sunlight a location receives "varies greatly depending on geographical location, time of day, season and clouds. The southwestern United States is one of the world's best areas for sunlight . Globally, other areas receiving very high solar intensities include developing nations in Asia, Africa and Latin America ." See also sustainable house design
But a person living in Siberia would not benefit much from this renewable resource. And while "solar energy technologies have made huge technological and cost improvements, [they]are still more expensive than traditional energy sources." However solar equipment will eventually pay for itself in 2 to 5 years depending on h ow much sun a particular location receives. Then the user will have a virtually free energy source until the end of the equipment's working life, according to a paper called "Energy Payback Time of Crystalline Silicon Solar Modules." Future improvements are projected to decrease the payback time to 1 to 3 years.
The best way of lowering the cost of solar energy is to improve the cell's efficiency, according to Larry Kazmerski, Director of the DOE's National Center for Photovoltaics. "As the scientists and researchers at the NCPV push the envelope of solar-cell efficiency, we can begin to visualize the day when energy from the sun will be generating a significant portion of the country's electric power demand." Any improvements and subsequent cost cuts will also be vital to space applications.Also try finding the right Electric company in order to save money. Power companies can help you benefit with decisions such as this.
As the price of solar power lowers and that of conventional fuels rises, photovoltaics "is entering a new era of international growth." So much so, that solar power "will remain an excellent energy option, long after the momentary fossil fuel model fades into smoke."

New Energy

ARTIFICIAL PHOTOSYNTHESIS
Image result for artificial photosynthesis

A plethora of potential alternative energy technologies seem just out of reach these days. The theories behind some of these "new" forms of energy production have been around for a long time and have historically met considerable opposition from traditional science and engineering. They still do today. The most common arguments against investigation of these new energy forms center around one of two important principles of physics. The first is conservation of energy in closed systems and the second is the current model of the nuclei of atoms, in particular hydrogen.
The response to these criticisms from researchers in the field has been two-fold as well. First, the definition of a closed system is open to discussion. Most researchers into new forms of compare electricity production do not argue the concept of energy conservation but point out that it is possible to define the system such that vacuum (or zero-point) energy is included and the apparent problems disappear. For permanent magnet motors, it is thought that the magnetic energy is converted directly. Second, it is pointed out that current models of nuclear fusion are incomplete and cannot produce the observed deficit of solar neutrinos. This leaves the models open to significant interpretation.
The next pages discuss new energy investigators , and their interesting work. We have divided our study into a number of related fields for ease of understanding. We recognize that our divisions are somewhat arbitrary. Here are the general topics covered in this study of the new energy field:
More New Energy:

RENEWABLE AND NON RENEWABLE SOURCES OF ENERGY

Renewable Energy        There are many forms of renewable energy   . Most of these renewable energies depend in one way or another o...